傅里叶变换红外光谱技术在超临界 CO₂ 作用 聚合物体系中的应用

时静雅 武培怡*

(聚合物分子工程教育部重点实验室 复旦大学高分子科学系 上海 200433)

摘 要 超临界 CO₂ (scO₂)作为一种物理化学性质优良、具有高扩散速率及优良溶解性能的溶剂,在 科学研究及工业生产中广受青睐。将 scO₂ 应用于聚合物体系中,CO₂与聚合物间特殊的相互作用有利于 CO₂ 分子在聚合物中的吸附与扩散。同时通过 CO₂ 的吸附及其对聚合物的溶胀和塑化作用,聚合物所处微 观化学环境以及整体结构性质会发生一定的变化。由于傅里叶变换红外光谱(FTIR)技术能够有效地考察化 学环境变化对分子结构造成的影响,这一表征技术在超临界 CO₂ 作用体系中广为应用。本文主要选取了近 年来利用 FTIR 技术考察 scO₂ 作用于聚合物体系的一些实例,从 CO₂-聚合物相互作用机理,scO₂ 对聚合物 或生物大分子的加工过程的影响两方面,阐述了红外光谱技术在 scO₂ 作用体系中的应用以及前景。

关键词 傅里叶变换红外光谱技术 超临界 CO₂ 溶剂诱导结晶 CO₂-聚合物相互作用 **中图分类号**: O657.3 **文献标识码**: A **文章编号**: 1005-281X(2009)05-1023-11

Application of FTIR Spectroscopy in Polymeric Systems under Supercritical CO₂ Processing

Shi Jingya Wu Peiyi^{*}

(Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China)

Abstract Supercritical carbon dioxide (scO_2) is recognized as an outstanding solvent in polymer processing and scientific investigation arising from its remarkable intrinsic traits such as high diffusivity and excellent solubility. Once applied into polymer processing the interactions between CO_2 and polymers may assist the sorption and diffusion of CO_2 in polymer chains , which may perturb the chemical environment of the molecular structure with the penetrating of CO_2 molecules, and can be probed by Fourier transform infrared (FTIR) spectroscopy. Besides, $scCO_2$ may improve the mechanical properties of the material ascribing to the CO_2 sorption, the CO_2 -induced plasticization and the swelling of polymers. FTIR spectroscopy is also proved to be an effective tool in investigating on the structure information especially of proteins or semicrystalline polymers. In this review , some researches in this field are discussed , in order to illuminate the handling of FTIR in studying the interaction between $scCO_2$ and polymers and revealing the rearrangements of polymer chain at molecular level. Then the promising application of this method in $scCO_2$ induced polymeric materials systems is clarified and prospected.

Key words Fourier transform infrared (FTIR) spectroscopy; supercritical CO_2 ; solvent induced crystallization; interaction between CO_2 and polymers

收稿: 2008年6月,收修改稿: 2008年8月

^{*}通讯联系人 e-mail :peiyiwu @fudan. edu. cn

Contents

- 1 Introduction
- 2 Study of the interaction between CO_2 and polymers by FTIR
- 2.1 On the Lewis acid-base interaction
- 2.2 On the hydrogen bonding in $scCO_2$
- 3 Study of the polymer processing in scCO₂ by FTIR
- 3.1 On the sorption of CO_2 in polymers by ATR-IR
- 3.2 On the scCO₂ induced crystallization of semicrystall polymers
- 3.3 On the conformational change of proteins in scCO₂
- 4 Conclusion

1 引言

自 1869 年 Andrews^[1] 首次发现临界点现象至 今,超临界流体历经近 150 年的发展,在聚合物合 成、萃取工业、溶剂化显色、均相异相反应等领域中 发挥了重要作用。其接近气体的扩散速度和类似液 体的密度,作为溶剂时无需改变组成,临界点附近微 小的温度或者压力变化即可引发其密度的变化等性 质,促使超临界流体在诸多领域中展示出良好的应 用前景。

常见的超临界流体中,超临界 $O_2(sCO_2)$ 作为 一种相对有机溶剂无毒无污染的溶剂,大量存在于 自然界中,在工业上广受青睐。其作为溶剂时能够 实现循环利用,相对减弱了 O_2 排放对温室气体效 应的负面影响。另一方面, O_2 的临界条件为 $T_c =$ 31.1 , $P_c = 7.4 MPa^{[2]}$,适于工业上安全操作。由于 制氨、制氢、乙醇工业以及燃烧化石原料的发电过程 中会产生大量 O_2 副产物,确保了 sCO_2 的来源及 综合利用,使其成为一种价格低廉并适用于大规模 合成工业的优质溶剂。

在聚合物的成型与加工过程中,超临界 CO₂ 具 有极大的应用潜力。由于超临界流体特殊的物理化 学性质,该领域中最早的研究出现于对 scCO₂ 在分 离、萃取以及分馏等过程中的应用研究;此后部分学 者考察了 scCO₂ 作为有机溶剂的取代物应用于聚合 物的合成过程的可能性,由于 scCO₂ 对聚合物的溶 胀作用,使其获得应用于聚合物发泡工业的潜能;而 对于聚合物的塑化作用,提供了利用 scCO₂ 改变聚 合物玻璃化转变温度并进一步应用于聚合物加工工 业的基础。

与此同时,随着红外光谱仪器的逐步演化及其 附带计算软件的不断升级,红外光谱技术在聚合物 领域中的应用得到进一步的发展。作为表征分子结 构的一种有效手段,红外光谱与分子的结构密切相 关,主要用以研究分子中以化学键连接的原子之间 的振动光谱和分子的转动光谱。由于分子内和分子 间相互作用,有机官能团的特征频率会由于官能团 所处的化学环境不同而发生微细变化,这为研究分 子内、分子间相互作用创造了条件。相对其他实验 技术而言,红外光谱技术能够提供一个短暂时间区 域内样品的信息,并可体现一段时间域中样品在外 扰作用下的变化过程,结果精确而且应用广泛。

在超临界 CO₂ 作用聚合物体系中,由于 CO₂ 与 聚合物分子间的相互作用,聚合物中部分结构以及 其所在化学环境受到一定扰动,红外谱图也相应发 生变化,诸多研究小组应用利用红外光谱技术,尤其 是傅里叶变换红外光谱技术研究 scO₂ 对聚合物体 系的作用^[3-6],本文就红外光谱技术在超临界 CO₂ 作用聚合物体系中的一些典型应用进行介绍。

2 scCO₂ 和聚合物相互作用的研究

2.1 scCO₂ 和聚合物 Lewis 酸碱相互作用的研究

CO₂ 在聚合物中的扩散过程,可以降低聚合物 分子的黏度,促使聚合物合成在较低的温度下进行, 并且扩大其在聚合物中的作用区域,因此超临界流 体的溶解性能以及对聚合物的吸附过程是影响聚合 物合成加工等过程的重要因素。除了温度和压力能 够影响 CO₂ 在聚合物中的溶解性能外,scCO₂ 和聚 合物的相互作用对这一过程也具有重要影响。

关于超临界 CO₂ 与聚合物的作用机理,学术界 一直存在着各种争论。由于红外光谱技术能够有效 地探测这类分子间相互作用,谱图中峰形、谱带位移 以及谱带吸收强度的变化都能反映分子所处化学环 境受到的外扰影响,一些研究小组利用红外光谱法 研究 CO₂-聚合物之间的交互作用,从而为超临界流 体在聚合物加工工业中的应用和研究奠定了一定的 理论基础。

早前的研究者认为 CO₂ 在某些溶剂中的溶解 性能与其充当电子受体或供体的能力有很大的联 系,Zerda 等利用拉曼光谱观测到 CO₂ 和聚合物主链 上的官能团之间存在弱静电相互作用^[7]。随后一些 课题组利用傅里叶变换红外光谱技术考察了 CO₂ 与聚合物的相互作用。其中 Fried 等^[8] 通过对醋酸 纤维素(CA)以及聚甲基丙烯酸甲酯(PMMA)在 CO2 中的高压 FTIR 研究、发现高压 CO, 中 CA 及 PMMA 中C原子的伸缩振动会向高波数处发生微小的迁 移,认为 CO₂ 和 C 原子的偶极相互作用造成了谱带 的迁移; Kazarian 小组^[9]利用 CO₂ 在660cm⁻¹附近弯 曲振动谱带的变化,验证了 CO2 和聚合物的分子间 的相互作用,并揭示 CO2 与聚合物主链上供电官能团 如 PMMA 主链上的羰基之间具有 Lewis 酸碱相互作 用。根据 Kazarian 的研究结果 .红外谱图中 CO_2 的弯 曲振动峰对干体系中 Lewis 酸碱相互作用较为敏感。 含羰基的聚合物体系中,这一振动谱带往往会发生裂 分.而谱带的半峰宽可用于 CO₂ 溶解性能的粗略估 测。目前 Lewis 酸碱相互作用理论已为大部分研究 工作者所接受:CO,中的C原子由于其周围电子云密 度低于电负性较高的 O 原子而呈现电正性,从而使 CO_{2} 表现出 Lewis 酸的性质 .作为电子受体在水、醇 类、酮类、胺类和氨基化合物等 Lewis 碱中同具有电负 性的基团形成电子供-配相互作用形式^[10]。

在这些工作的基础上,Nalawade 等¹¹¹利用傅里 叶变换红外光谱技术考察了不同结构聚合物和 CO₂ 之间的作用关系。他们对比了丙氧基聚酯(P120)、 乙氧基聚酯(P130)、聚乙二醇(PEG)以及聚苯醚 (PPO)在高压 CO₂ 中红外谱图的变化,发现随 CO₂ 压力的升高一些特征振动向高波数处发生细微偏 移,表明 CO₂ 和聚合物间相互作用的存在。

如图 1 和图 2 所示,对 P120 和 P130 的谱图进 行比较发现, C=O 基团在 P120 中的变化略微大 于 P130。尽管 P120 中 位上甲基的存在削弱了 CO₂ 的 Lewis 酸碱相互作用,然而考虑到分子量的差 异可以引起聚合物中的自由体积差异,从而进一步 影响聚合物的黏度。在示例中,由于 P130 的分子量

大于 P120,因而黏度更大、自由体积变小,CO2和聚 合物间相互作用减弱。

图 2 313.15K时 P130中 C=O 键伸缩振动谱图^[11] Fig. 2 The spectra of the stretching vibrations of C=O group in P130 at 313.15 K^[11]

根据660cm⁻¹处谱带迁移程度可认定各聚合物 与 CO₂ 作用的强弱程度为: PEG PPO >> PI20 PI30。这一实验结果表明聚合物侧基的种类对于 CO₂ 的溶解性能具有一定的影响。Beckman 等^[12]研 究发现带有乙烯基官能团的聚合物和 CO₂ 间有相 对较强的相互作用。

2.2 FTIR 技术对 scCO₂ 溶剂中氢键作用的研究

超临界 CO₂ 作为一种非极性溶剂,是大部分非 极性分子及一些低分子量极性分子的良溶剂,但对 于大分子量分子来说,CO₂ 在常温常压下往往是一 种不良溶剂。通常情况下少量极性分子的加入可以 改善极性物质的移动速率,同时添加物并不影响超 临界流体高扩散系数、低黏度的优点。工业上往往 通过一定量极性小分子的加入,对超临界流体进行 改性。经极性试剂改性后的超临界流体在分离萃取 中具有重要作用,超临界流体中简单醇类的相行为 得到了广泛研究。

另一方面,由于溶剂与溶质间的相互作用能够 影响其在振动光谱中的频率及强度,FTIR 作为一种 敏感度精度较高的技术手段,在近来一段时间内被 广泛用于超临界流体环境中氢键作用的研究^[13,14]。 早在 20 世纪 90 年代初,研究者利用红外技术对超 临界流体密度对甲醇和三乙胺、全氟三丁基醇与二 甲基醚之间氢键作用^[15,16],超临界 CO₂ 中安息香酸 在氢键作用下呈环状二聚体的过程^[17]以及分子内 或分子外氢键对超临界 CO₂ 中非离子表面活性剂 和醇类的积聚行为进行了研究^[18]。现有证据表明, 在诸多类型的氢键中,仅有两类具有特殊的稳定性: 线形的二聚体以及环状的四聚体。

Smith 等^[19]利用傅里叶变换红外光谱技术研究

了超临界 CO₂ 中甲醇的氢键。研究结果表明由于 CO₂ 与甲醇间弱的相互作用,当甲醇浓度到达一定 数值时出现氢键,这将使得平衡向形成醇单体的方 向移动。IR 谱图同时揭示了醇单体与 CO₂ 间一种 特殊相互作用的存在,可能存在于某种弱的醇络合 物与一小部分 CO₂ 分子之间,为进一步解释设想中 CO₂-甲醇混合物的剩余摩尔热焓提供了线索。Wu 等^[20]考察了超临界甲醇中的氢键作用,通过红外谱 图中 OH 伸缩振动强度和频率的变化,认为超临界 状态下甲醇中的氢键被打破,温度和压力对于氢键 的存在有显著影响。Tominaga 等^[21]在研究 CO₂ 溶解 性能与固体聚合物电解质导电率的过程中,通过 FTIR 发现充当 Lewis 酸的 CO₂ 分子对 PMEO 的吸附 过程会减弱初始状态下 C=O 与 OH 的氢键作用, 并增强侧链的柔顺性。

由于 OH 基团在红外中的振动对于分子间相互 作用较为敏感, Tassaing 等^[22] 利用中红外吸收光谱 检测溶解于超临界 CO₂ 中乙二醇(简称 EG),1,4-丁 二醇(简称 BD)的振动形式,分析并验证了这两种二 醇与 CO₂ 的分子间相互作用。

图 3(A) 所示为 60 ,压力在 11—30MPa 间变化 得到的 EG在 scCO₂中 OD 伸缩振动区域的谱图。 11MPa下,峰强度较弱,这是由于溶质在这一压力下 未能完全溶解。任意压强下,红外谱图在图示范围 内表现为带有两重峰的包峰。曲线拟合得到中心位 于2 704cm⁻¹和2 678cm⁻¹的两重峰,随压力的升高, 谱带发生红移。他们将这两处峰分别归属于 O_a — D_a和 O_b —D_b 伸缩振动。前者由于分子内氢键的存 在,较后者出现频率略高。2 500—2 650cm⁻¹范围内 无吸收谱带,说明氢键未发生聚集,从而说明 EG分 子以单体形式存在于溶剂中,仅同周围的 CO₂ 分子 发生相互作用。为了验证这一相互作用的谱学特 征,他们还做了相同条件下超临界氩气中的谱图如 图 3(B) 所示。

从以上两张谱图的比较可以看出:随着压力的 增加,倾向于形成更加稳定的异构体。溶剂分子间 的碰撞几率增加,从而导致谱图简化成为中心位于 2718cm⁻¹处的宽峰,以及2 685cm⁻¹处的侧峰。对比 scAr 和 scCO₂中的谱图,发现 O₄—D₄氢键的谱带从 2718cm⁻¹处移向2 704cm⁻¹处,利用分峰处理后,发 现在 scCO₂与 O_b—D_b氢键相关的谱带发生迁移和 变窄。从2 685cm⁻¹到2 678cm⁻¹的红移,峰宽从 44 个波数变到 35 个波数。因此两个谱带中心位置间

图 3 60 不同压力超临界流体环境下 EG中 OD 伸缩振动的红外谱图: (A) scCO₂; (B) scAr^[22]

Fig. 3 IR spectra of OD stretching modes of EG at different pressures and constant temperature (60): (A) in scCO₂ and (B) in scAr^[22]

距离从 33 个波数降至 26 个。通过这一结论可以讨 论 CO₂ 与氢键作用的特性。

利用同样的方法考察 BD 在超临界 CO₂ 中的行 为,得到图 4。谱图中也存在两个吸收峰,其中 2 696cm⁻¹处为 O_a — D_a 羟基峰,而2 581cm⁻¹的峰归 属于受到两个醇分子分子间氢键影响的 O_b — D_b 羟 基峰。当压力由 16MPa 升至 30MPa,谱带发生红移。 同样将 BD 在 scCO₂ 中的行为与在 scXe (密度同 scCO₂)中的行为进行比较,发现 CO₂ 中两峰间的距 离变宽,从而说明 CO₂ 对不同二醇的氢键均有 影响。

3 利用 FTIR 技术对 scCO₂ 作用环境中聚合物加工过程的研究

scCO₂ 在聚合物的加工和成型过程中的应用受 到研究工作者的广泛关注。由于 CO₂ 和聚合物间 各种相互作用的存在,通过 scCO₂ 对聚合物的吸附 效应及其所致的聚合物溶胀效应和塑化过程,能够 降低聚合物的玻璃态转变温度,增加聚合物链段的 移动速率并增大分子链间的自由体积。因此了解 CO₂ 吸附及聚合物溶胀的数据,进而理解聚合物-

图 4 60 不同压力超临界流体环境下 BD 中 OD 伸缩振动的红外谱图: (A) scCO₂; (B) scXe¹²¹

Fig. 4 IR spectra of OD stretching modes of BD at different pressures and constant temperature (δC): (A) in s:CO₂ and (B) in scXe^[22]

CO₂ 体系的相平衡过程,讨论在 scCO₂ 中聚合物的 相应变化过程,对聚合物的工业生产过程中 scCO₂ 的应用具有重要的指导意义。

3.1 scCO₂ 的吸附作用及对聚合物的溶胀效应的 ATR-IR 研究方法

自 Kazarian 利用 FTIR 和衰减全反射红外光谱 (ATR-IR)考察包括 PMMA 在内一系列聚合物与 CO₂ 特殊的分子间相互作用之后^[9],Rajendran 等^[23]通过 对聚合物溶胀过程的光学测量以及双密度法,考察 了 PMMA 的吸附过程。Shieh 和 Liu^[24,25]利用重量分 析与 FTIR 光谱技术相结合分别讨论了 32 ,压力 至 350bar 下的吸附过程以及 CO₂/聚合物相互作用。

此后, Kazarian 等^[26]利用原位近红外光谱考察 了 CO₂ 的吸附效应以及 PEG 的溶胀效应。在 25 环境中一系列压力变化下,考察 CO₂ 和 PEG 组合频 与倍频吸收强度的变化:其中4 950cm⁻¹谱带为 CO₂ 的组合频(1+22+3),4 850cm⁻¹为 PEG 的吸收 峰,分别用以研究 CO₂ 的吸附以及液态聚合物的溶 胀。通过对相应吸收率的积分计算,换算出 CO₂ 的 质量浓度,以及由于溶胀效应导致的聚合物密度的 变化,从而衡量 scCO₂ 在液态聚合物中的吸附溶胀 效应。这一工作表明利用原位 FTIR 能够提供 CO₂ 吸附过程以及聚合物溶胀的直接测量,这一方法的 优点在于能够将 CO₂ 同体系中其他组分分开,并且 可以检测体系中存在的杂质。

较传统的 FTIR 而言,ATR-IR 无需透过样品,而 是依靠样品表面全反射信号获取样品表层的结构信 息,从而能够应用于聚合物表层中特殊结构的表征。 一方面,ATR-IR 光谱技术可用来测量小分子在聚合 物中的扩散和吸附过程,通过聚合物谱带吸收峰强 度的变化获得聚合物溶胀效应的一手数据。另一方 面,ATR-IR 技术可用于对聚合物与溶剂间的相互作 用在分子尺度上的研究,尤其可用于聚合物与吸附 在聚合物表面气体的表征过程。

建立于这一理论基础上, Kazarian 等^[27]提出了 利用 ATR-IR 技术同时考察 scCO₂ 吸附及聚合物溶 胀效应的新方法。图 5 所示为文献中给出的 ATR-IR 测试方法示意图。

图 5 ATR-IR 技术对聚合物的测试机理: (a) 加入 CO₂ 之前; (b) 暴露在 CO₂ 中^[27]

Fig. 5 Schematic view of the polymer on the ATR-IR crystal : (a) before and (b) during exposure to $CO_2^{[27]}$

他们首先通过 ATR-IR 光谱仪获得二甲基硅氧 烷聚合物 (PDMS) 在 23 不同 CO₂ 压力下达到平衡 时的红外谱图,实验观察发现除了吸附于 PDMS 上 CO₂ 的 2,3 振动谱带吸收强度增强外,其余峰强一 致减弱。随后以2 335cm⁻¹ 处 CO₂ 的 3 振动以及 1 259cm⁻¹ 处 PDMS 的 (CH₃) 振动吸收峰强度的变 化 (如图 6) 为参考,利用 Beer-Lambert 定律计算出 CO₂ 的质量浓度并从 (CH₃) 的吸收强度推算出 PDMS 中自由体积的变化以及溶胀效应。通过对 PDMS/CO₂ 体系的考察,将所得结果与文献数据进行 对比从而验证了利用原位光谱法考察吸附溶胀效应 的可行性。

图 6 23 不同 CO₂ 压力下 PDMS 的 ATR- IR 谱图 (CO₂ 的 3 振动出现在2 335cm⁻¹处, PDMS 的 (CH₃) 振动出现 在1 259cm⁻¹处)^[27]

Fig. 6 ATR-IR spectra of PDMS at ca. 23 subjected to CO_2 pressures up to 11MPa (the ₃ band of CO_2 absorbs at 2 335cm⁻¹ and the (CH₃) band of PDMS absorbs at 1 259cm⁻¹)^[27]

此后很多研究小组针对不同的聚合物,利用这 一方法开展了一系列的研究工作。由于重量分析法 是考察聚合物吸附溶胀效应的重要手段之一, Kazarian 等^[28] 通过讨论一些具有生物相容性的聚合 物中 CO2 吸附过程进一步比较了重量分析法与原 位光谱法。质量分析法在实验上便于操作,而光谱 学方法通过对分子间相互作用的考察能够获得更为 精确的结果。Sadowski 等^[29]利用高压 ATR-IR 方法 对聚苯乙烯/苯乙烯/CO2 三元体系的相平衡数据进 行了测算。Eabd 等^[30] 对 FTIR-ATR 法在聚合物体 系中研究分子扩散行为的应用进行了归纳和总结。 由于 FTIR-ATR 通过溶剂与聚合物基团振动能量和 所吸收光的波长不同、能够区别出两者的相应信息、 同时可以借助于一些吸收扩散经验模型的计算,利 用吸收谱带的位移进行聚合物和溶剂相互作用的定 量计算。

3.2 scO2 对聚合物结晶行为的影响

DeSimone^[31]对超临界 CO₂ 流体中聚合物的系列 行为尤其是聚合物的合成进行了归纳;Cooper 等^[32] 和 Tomasko 等^[33]分别对 scCO₂ 中聚合物的合成和加 工进行了总结;此后,Nalawade 等^[34]在其综述中着重 讨论了 scCO₂ 在聚合物熔融加工过程中的应用。

通过 scCO₂ 的吸附过程,其对聚合物有溶胀和 塑化作用。CO₂ 在聚合物中的扩散能够有效地调控 聚合物的自由体积,从而影响聚合物链段的迁移性 能,改变聚合物的玻璃态转变温度。scCO₂ 另一卓 越优点在于 scCO₂ 能够通过卸压迅速变为气体从底 物中释放出来,同时利用 CO₂ 的密度的变化可调控 这一过程^[35,36],最终实现对聚合物的结晶行为的调 控。目前已经报道的可用超临界 CO₂ 诱导结晶的 聚合物有 PET、PP、PC、sPS 以及 PVDF 与 PMMA 的共 混物等。

对于利用超临界流体技术合成聚合物的过程而 言,FTIR 可用于产物的表征,这是 FTIR 在这一领域 中最为基本的应用方式。而对于多晶型或半晶聚合 物而言,不同的晶型结构具有不同的振动能量,因而 在红外谱图中呈现出不同的特征峰。常压下从聚合 物样品膜片的红外谱图中可以获得聚合物链在晶区 或无定形区域内的排列形式,从而使得利用红外光 谱技术讨论聚合物的晶型结构成为一种便利而可行 的实验方案。一段时间以来,很多工作小组利用红 外光谱技术考察了超临界或者高压 CO₂ 环境中聚 合物的结晶行为。

Handa 等^[37]研究了高压 CO₂ 对聚苯乙烯 (sPS) 相转变和多晶性的影响。他们发现在高压 CO₂ 中, sPS 会经历仅在溶剂中出现的由平面中间相到 型,

型到 型以及 型到 型的相转变过程。同时发现与常压环境相比,在高压 CO₂ 中玻璃态 sPS 能够 在较低的温度下转变为平面中间相和 型结晶, 到 的转变温度也有所降低。尽管这一工作中 CO₂ 尚未到达超临界状态,但仍为之后的研究工作奠定 了一些基础。

此后,Asai 等^[38]综合 WAXD、DSC、FTIR 等技术 手段,考察了聚 2,6-萘二甲酸乙二酯纤维(PEN)经 超临界 CO₂处理后的高规整结构,研究了 scCO₂ 对 聚合物结晶形态的影响。Kazarian 等^[4]利用 ATR-FTIR 技术考察了聚对苯二甲酸乙二醇(简称 PET) 在 scCO₂处理前后的构象变化。通过 PET 样品中无 定形区域存在的两种类型乙二醇构象,在红外光谱 中分别对应于不同特征谱带吸收强度的变化,考察 了 scCO₂处理过程中 PET 晶形结构发生的变化。此 外还有一些研究小组结合 FTIR 等多种分析手段考 察了 scCO₂ 对共混聚合物中聚合物构象变化的影 响^[39]。 在这些研究的基础上,何嘉松等利用包括 FTIR 在内的多种分析测试手段对聚苯乙烯(sPS)在 scO2 中的结晶行为进行了一系列的考察,包括超临界 O2 诱导 sPS 结晶过程中,处理时间、处理温度对其 结晶形态的影响^[40], 晶型在 scO2 中的晶型转变 过程^[41], 晶型到 晶型的转变过程^[42]以及无规聚 苯乙烯和 scO2 对间规聚苯乙烯构象的竞争效 应^[5]。作为一种多形态聚合物,sPS 在其结晶区内 可能存在有,,,,四种结晶形态。在不同的处理 过程和外界条件下可以得到不同类型的最终产物。 其中具有螺旋构象的 晶型往往可以通过对玻璃态 sPS 溶剂诱导结晶过程获得。

利用 FTIR 考察 scCO₂ 环境中处理时间对 sPS 相转变 过程的影响得到 35 ,12MPa 时的谱图 (图 7)^[40]。

图7 sPS 样品的 FTIR 谱图: (a) 无定形样品; (b) 经 scCO₂ 处理 5h 后^[40]

Fig. 7 FTIR patterns of sPS samples of (a) anorphous and (b) treated in supercritical CO_2 (35 and 12MPa) for $5h^{[40]}$

以玻璃态 sPS 的谱图作为参照可以发现,在 502、572、599、610、932、944cm⁻¹等处均出现了新峰或 是峰强度的显著增加。其中502cm⁻¹和572cm⁻¹处的 峰归属于螺旋状中间相或具有螺旋构象的结晶形 态;599、610cm⁻¹以及 932、944cm⁻¹处的峰表明聚合 物链由无定形相重排形成具有螺旋构象的 晶型。

利用572cm⁻¹处谱带强度变化结合作为对比的 1 028cm⁻¹处谱带变化得到图 8。从图中的强度的变 化趋势来看,随着超临界 CO₂ 环境温度的增加,sPS 从无定形到 晶型的变化速率也随之增快,同时 80 时能够最终得到结晶度最高的产品。说明通过 增高超临界 CO₂ 的温度能够显著增快 sPS 从无定形 到 晶型的结晶过程。

图 8 12MPa 不同温度 scCO₂ 中572cm⁻¹谱带相对吸收强 度随处理时间的变化曲线^[40]

Fig. 8 Relative intensity of the 572 cm^{-1} band as a function of time in 12MPa of scCO₂ at various temperatures^[40]

而后利用 FTIR 考察处理温度对相转变过程的 影响,分析 12MPa 不同温度的处理过程结果可以得 到 590 —620cm⁻¹区域谱图,如图 9 所示。谱图上这 一区域内特征峰的峰形和强度与溶剂分子的极性, 以及 sPS 与溶剂间的相互作用强度有关^[43]。其中, 40 —120 温度范围内,归属于 晶型的 599cm⁻¹和 610cm⁻¹处的谱带强度变化表明了超临界 CO₂ 对 sPS 有溶剂诱导结晶作用。

图 9 sPS 样品经 12MPa 不同温度 scCO₂ 处理 5h 后的 FTIR 谱图^[40]

Fig. 9 FTIR patterns of sPS sample treated at various temperatures with 12MPa CO_2 for 5h^[40]

如图 10 所示,在 40 — 120 范围内,932cm⁻¹和 944cm⁻¹处存在一对归属于 晶型的双峰。120 时,852 和1 222cm⁻¹处出现了归属于 晶型的弱峰, 暗示 晶型的产生,此时 sPS 中同时存在有 和 两种晶型。当温度继续升高至 140 和160 时,852 和1 222cm⁻¹处峰强度显著增加,同时907cm⁻¹的谱

图 10 sPS 样品经 12MPa 不同温度 scCO₂ 处理 5h 后的 FTIR 谱图^[40]

Fig. 10 FTIR patterns of sPS samples treated with 12MPa of CO_2 at various temperatures for $5h^{[40]}$

带迁移到902cm⁻¹处,这些谱学信息表明利用超临界 CO₂处理 sPS,当温度更高时,则无定形区域中逐渐 形成了 晶型。而在通常条件下,晶型会在190 时转变为 晶型,超临界流体的存在,可以降低这一 转变温度。

此后,何嘉松等^[41]在最近的研究工作中又利用 FTIR 光谱技术考察了超临界 CO₂ 环境中等规聚丙 烯(sPP)的晶型转变过程,并着重讨论了 form 型 sPP 在超临界条件下的相对稳定性。常见的间规聚 丙烯晶型有 4 种,form 和 form 型呈现s(2/1)2螺 旋构象,其中 form 型最为稳定。通常情况下,热 力学条件,压力变化以及溶剂环境都会影响 sPP 的 结晶行为。

经 WAXD 及 FTIR 验证,样品为 form 型,并含 有部分反式平面中间相。将 sPP 样品在 12MPa 超临 界 CO₂ 中冷结晶 7h 后,得到如下红外谱图(图 11)。

从图 9 中可以看出,在超临界 CO₂ 环境中,35 时表征反式平面中间相的 831、963 和1 132cm⁻¹等强 度逐渐减弱,而表征螺旋构象的 810、843、868、977 和 1 005cm⁻¹处谱带强度逐渐增加。对比常压实验,发 现35 下其晶型未发生显著变化,从而说明超临界 流体能够影响聚合物的结晶行为,通过 scCO₂ 的使 用,能够在较短时间内调控聚合物的晶型。

在这一部分的研究中, FTIR 往往结合 DSC, WXRD 等实验手段用来考察超临界流体环境中聚合 物各体系晶型结构的变化。这一方法还可用于聚合 物结晶动力学的研究,通过考察特征谱带吸收强度 随作用时间的变化,获得研究结晶动力学的一手数 据。FTIR 技术是一种讨论晶型变化的重要手段。

图 11 原始样品经 12MPa 超临界 CO₂ 处理后的 FTIR 谱 图:(a) 常压下;(b) 经不同温度 scCO₂ 处理 7h(图中 H标 志样品的螺旋构象,T表示反式平面中间相)^[41]

Fig. 11 FTIR spectra of the original sample treated in supercritical CO_2 of 12MPa (a) and atmospheric pressure (b) for 7h at the temperatures indicated ,where the arrows indicate the helical conformation (H) and the trans-planamesophase (T)^[44]

3.3 scCO₂环境中蛋白质构象变化的谱学研究

除了在聚合物领域的应用,超临界流体技术在 蛋白质及生物分子的科学研究及工业制造中也占有 一席之地,包括基于这一技术对某些含有蛋白质共 聚物微球制备过程中的喷雾萃取体系^[45],利用 scCO₂的分散增强作用制造重组细胞的免疫血球蛋 白粉末^[46]或进行质粒DNA的操作,觅求基因治疗的 进一步发展^[47]。

由于超临界流体在药物合成工业中的良好前 景,研究超临界或者高压 CO₂ 对蛋白质或酶的二级 结构的影响具有重要意义。这些性质能够帮助理解 当 scCO₂ 应用于灭菌工艺中,基于微生物失活的分 子机理^[48]。与此同时,傅里叶变换红外光谱技术广 泛应用于合成多肽及蛋白质二级结构的研究之中。

Kazarian 等^[9] 曾报道在装备 ZnSe 窗片的高压光 学光学室中,当压力高于7.5MPa,温度介于 25 — 40 时,利用2—4mm的路径长无法获得 scCO₂ 中的 透射 FTIR 谱图。Striolo 等^[49] 提出一个实验上可行的方案,利用 1mm 左右的路径长,考察了白蛋白和溶解酵素在40 多种压力高压 CO₂ 中的透射 FTIR 谱图。

该研究中,他们首先考察了在无 CO₂ 环境中升 高压力,得到两种蛋白质红外谱图变化如图 12 所 示。可以看出在1 000 --4 000cm⁻¹范围内,压力无明 显变化。间接说明在这一区域内,加入 CO₂ 所得到 的进一步结果是超临界 CO₂ 与蛋白质分子间相互 作用的表观显示。

图 12 白蛋白在不同压力 N₂ 环境(无 CO₂, 2, 5, 9, 10 和 12MPa)中的 FTIR 谱图^[49]

Fig. 12 FTIR spectra recorded for albumin film under N_2 atmosphere at various pressures (no CO_2 atmosphere ,2,5,9, 10, and 12MPa)^[49]

对这一体系红外谱图的剖析可以分成 3 个区段 进行:1 685 —1 650 cm⁻¹内是氨基化合物 的特征 峰,氨基化合物 的特征峰则主要出现在1 632 — 1 530 cm⁻¹区域;2 966 —2 860 cm⁻¹间四个峰归属于 氨基酸中酰胺键官能团的 (N—H)振动;而 3 302 cm⁻¹处的峰由 (OH)振动引发。

图 13 所示为溶解酵素在不同 CO₂ 压力 (无 CO₂,2,5,9,10,12MPa)下的红外谱图变化。图中可 以看出,压力高于8MPa时,CO₂ 与蛋白质膜片间发生 显著的相互作用,导致红外谱图中峰强度的变化。 他们认为在这一中间转变压力之下,CO₂ 与蛋白质 间主要为弱相互作用,但压力升高到一定程度后,发 生化学作用,从而引发聚合物二级结构的变化。这 一特定的压力可能取决于蛋白质自身的性质以及实 验条件的设置。

仔细分析这一区域内的红外谱图,1000— 1500cm⁻¹区域内出现峰强度的变化,这些峰主要归 属于 (C—O)和 (C—OH)的对称及不对称振动。 1656cm⁻¹处胺类化合物的特征峰随 CO₂ 压力的增

图 13 溶解酵素样品膜片在不同 CO₂ 压力下的 FTIR 谱 图,沿图示箭头方向分别为无 CO₂ ,2 ,5 ,9 ,20 ,12MPa。(a) 1 000 -- 1 800 cm⁻¹; (b) 2 800 -- 3 400 cm^{-1 [49]}

Fig. 13 FTIR spectra recorded for a film of lysozyme at various CO_2 pressures. From bottom to top ,different lines are for no CO_2 atmosphere, 2, 5, 9, 10, and 12MPa, respectively. (a) For wavenumber between 1 000 and 1 800cm⁻¹; (b) for wavenumber between 2 800 and 3 400cm^{-1[49]}

强而变宽,并且由于 CO₂ 与蛋白质链中酰胺键官能 团的相互作用,1604cm⁻¹ 处出现了新的侧峰。 2966 -- 2860cm⁻¹ 区域发现类似变化。由于 CO₂ 与 氨基酸形成过程中残留胺基的相互作用,随着 CO₂ 压力的升高,一些谱带的强度显著增强。同时, 1735cm⁻¹ 处出现了表征 胺类化合物或脂类

(C=O)振动的峰,由于 CO₂ 与氨基酸侧链上的 羟基发生相互作用而产生羰基,羰基峰强度逐步 增强。

综上所述, xcCO2 能够影响蛋白质分子的二级 结构,同时, CO2 会与氨基酸中残留的羟基或氨基发 生交互作用,从而引发中红外区域内部分峰强度发 生变化。

另一方面,由于蛋白质的生物活性与其二级结构显著相关,因此 scCo2 能够影响蛋白质的活性。

图 14 为 scCO₂ 处理前后蛋白质膜片谱图的比较,注意到两张谱图的差异主要出现在2 900cm⁻¹ 附近,而表征胺类化合物的1 656cm⁻¹和1 541cm⁻¹附近 无明显变化,说明经历 scCO₂ 的处理过程,蛋白质仍

图 14 实验前后 N₂ 环境中测得溶解酵素的 FTIR 谱图, 图中箭头所指为实验后得到的谱图:(a)1000---1800cm⁻¹;(b)2800--3400cm^{-1[40]}

Fig. 14 FTIR spectra for lysozyme under N_2 atmosphere before and after an experiment. (a) For 1 000 – 1 800 cm⁻¹ wavenumber; (b) for 2 800 – 3 400 cm⁻¹ wavenumber. The region in between, not shown for clarity, does not show any difference in the two spectra. The arrow indicates the spectrum recorded after the experiment^[49]

会基本恢复到最初的二级结构。然而1 737cm⁻¹处 部分谱带在实验前后保持不变,表示 CO₂ 与蛋白质 作用过程中形成的一些羰基能够较为稳定地存在于 体系之中。这一结果表明大部分经历 scCO₂ 处理的 生物酶及激素,在处理过程后仍能保持生物活性,因 此利用超临界流体技术制造生物药物的过程是十分 可行的。同时,在 scCO₂ 处理过程中,一些二级蛋白 质结构会发生大范围的变化,从而暂时影响蛋白质 的活性。这为研究 scCO₂ 在灭菌工艺中引发微生物 失活的应用提供了新的思路。

4 结语

除了聚合物体系以外,超临界 CO₂ 还可应用于 化学化工,石油冶炼以及医学制药等行业中一些无 机物或小分子的加工处理和研究过程。相应傅里叶 变换红外光谱技术也广泛渗透于各种 scCO₂ 作用体 系的考察与研究之中。

在 scCO, 作用聚合物体系中, 一方面通过与聚 合物间特殊的相互作用,超临界流体的引入能够极 大地改善聚合物的性质。然而 scCO₂ 与聚合物相互 作用的机理尚未获得定论,具体聚合物的性质变化 尚未得到确凿的数据,需要采用先进的表征手段进 行进一步的考察与研究;另一方面,超临界流体技术 在聚合物加工过程的工业应用中也有待进一步的发 展和完善。随着这一技术在聚合物规模化处理中应 用的拓展,要求研究者更为了解和掌握超临界流体 对聚合物体系的作用过程,并借助于先进手段对实 际工艺操作实现自动化控制。在这一背景之下, FTIR 技术作为一种操作简便,可实现在线观测、实 时跟踪的技术手段,将受到这一领域中研究工作者 越来越多的关注与青睐。当然,尽管红外技术被广 泛应用于这一类问题的研究过程中,仍然表现出一 定的局限性:一方面由于硬件限制.红外测试对所考 察的样品的形态有一定的要求;另一方面对复杂聚 合物而言,其红外谱图尚未获得透彻的剖析,由于影 响基团振动的因素复杂,增加了解析图谱获取结果 的难度,需要利用一些数学方法对吸收强度较大的 峰或是重叠峰进行分析,造成估测结果的不确定性。 同时对于超临界流体体系而言,红外光谱仪的样品 室需要采用特殊的构造以及材料以承受高压条件, 这就增加了实验的操作的复杂性和专业性。

在未来一段时间内,通过对这一技术自身的改 良与完善,FTIR 将在超临界流体作用聚合物体系的 研究领域内,发挥其高度敏感,测量迅速的优势。利 用 FTIR 技术跟踪考察体系中某些对外扰作用相对 敏感的基团振动,从而获得体系在外扰下内部相互 作用以及其所引发的表观效应的相关信息。将这一 技术同其他先进表征手段连用,将帮助研究工作者 在这一领域中开展更为精致的工作。该技术将渗透 于超临界流体技术的发展方向中,作为一种高效的 辅助表征手段,展现出良好的应用前景和发展趋势, 为超临界流体技术的发展做出贡献。

参考文献

- [1] Andrews T. Philos. Trans., 1869, 159: 575-590
- [2] Sun Y P. Supercritical Fluid Technology in Materials Science and Engineering: Syntheses, Properties, and Applications. New York Baker & Taylor Book, 2002
- $[\ 3\]$ Fleming O S , Chan KL A , Kazarian S G. Vibrational Spectroscopy , 2004 , 35 : 3 -7
- [4] Kazarian S G, Brantley N H, Eckert C A. Vibrational Spectroscopy, 1999, 19: 277-283

- [5] Ma WM, YuJ, He J S. Journal of Polymer Science Part B: Polymer Physics, 2007, 45: 1755-1764
- [6] Tassaing T, Oparin R, Danten Y, et al. Journal of Supercritical Fluids, 2005, 33: 85-92
- [7] Zerda T W, Song X, Jonas J. Applied Spectroscopy, 1986, 40: 1194 - 1199
- [8] Fried J R, Li W. Journal of Applied Polymer Science, 1990, 41: 1123-1131
- [9] Kazarian S G, Vincent M F, Bright F V, et al. J. Am. Chem. Soc., 1996, 118: 1729-1736
- [10] Raveendran P, Wallen S L. Journal of the American Chemical Society, 2002, 124: 12590-12599
- [11] Nalawade S P, Picchioni F, Marsman J H, et al. The Journal of Supercritical Fluids, 2006, 36: 236-244
- [12] Sarbu T, Styranec T J, Beckman E J. Industrial & Engineering Chemistry Research , 2000 , 39: 4678-4683
- [13] Lalanne P, Andanson J M, Soetens J C, et al. Journal of Physical Chemistry A , 2004 , 108 : 3902 - 3909
- [14] Sokolova M, Barlow SJ, Bondarenko GV, et al. Journal of Physical Chemistry A, 2006, 110: 3882-3885
- [15] Gupta R B, Combes J R, Johnston K P. Journal of Physical Chemistry, 1993, 97: 707-715
- [16] Kazarian S G, Gupta R B, Clarke M J, et al. Journal of the American Chemical Society, 1993, 115: 11099-1109
- [17] Tsugane H, Yagi Y, Inomata H, et al. Journal of Chemical Engineering of Japan, 1992, 25: 351-353
- [18] Yee G G, Fulton J L, Smith R D. Langmuir, 1992, 8: 377-384
- [19] Fulton J L, Yee G G, Smith R D. Journal of the American Chemical Society, 1991, 113: 8327-8334
- [20] Wu X J, Chen Y Y, Yamaguchi T. Journal of Molecular Spectroscopy, 2007, 246: 187-191
- [21] Tominaga Y, Asai S, Sumita M. Macromolecules, 2007, 40: 3348-3354
- [22] Renault B, Cloutet E, Tassaing T, et al. Journal of Physical Chemistry A, 2007, 111: 4181-4187
- [23] Rajendran A, Bonavoglia B, Forrer N, et al. Industrial & Engineering Chemistry Research, 2005, 44: 2549-2560
- [24] Shieh YT, Liu KH. Journal of Polymer Research-Taiwan, 2002, 9: 107-113
- [25] Shieh Y T, Liu K H. Journal of Supercritical Fluids, 2003, 25: 261 - 268
- [26] Guadagno T, Kazarian S G. J. Phys. Chem. B, 2004, 108:

13995-13999

- [27] Flichy N M B, Kazarian S G, Lawrence CJ, et al. J. Phys. Chem. B, 2002, 106: 754-759
- [28] Duarte A R C, Anderson L E, Kazarian S G, et al. The Journal of Supercritical Fluids , 2005 , 36 : 160-165
- [29] Görnert M., Sadowski G. Macromolecular Symposia, 2007, 259: 236 - 242
- [30] Elabd YA, Baschetti MG, Barbari TA. Journal of Polymer Science Part B: Polymer Physics, 2003, 41: 2794-2807
- [31] Kendall J L, Canelas D A, DeSimone J M, et al. Chemical Reviews, 1999, 99: 543-563
- [32] Cooper A I. Journal of Materials Chemistry, 2000, 10: 207-234
- [33] Tomasko DL, Li H, Liu D, et al. Ind. Eng. Chem. Res., 2003, 42:6431-6456
- [34] Nalawade S P, Picchioni F, Janssen L P B M. Progress in Polymer Science, 2006, 31: 19-43
- [35] Chiou J S, Barlow J W, Paul D R. Journal of Applied Polymer Science, 1985, 30: 2633-2642
- [36] Wang W C V, Kramer EJ, Sachse W H. Journal of Polymer Science Part B: Polymer Physics, 1982, 20: 1371-1384
- [37] Handa Y P, Zhang Z Y, Wong B. Macromolecules, 1997, 30: 8499 - 8504
- [38] Asai S, Shimada Y, Tominaga Y, et al. Macromolecules, 2005, 38: 6544 -- 6550
- [39] Shieh YT, Liu KH. Journal of Polymer Science Part B: Polymer Physics, 2004, 42: 2479-2489
- [40] Ma W M, Yu J, He J S. Macromolecules, 2004, 37: 6912-6917
- [41] Ma W M, Yu J, He J S. Macromolecules, 2005, 38: 4755-4760
- [42] Liao X, He J S, Yu H. Polymer, 2005, 46: 5789-5796
- [43] Yoshioka A, Tashiro K. Macromolecules, 2003, 36: 3001-3003
- [44] Ma W M, Yu J A, He J S, et al. Polymer, 2007, 48: 1741-1748
- [45] Elvassore N, Bertucco A, Caliceti P. Journal of Pharmaceutical Sciences, 2001, 90: 1628-1636
- [46] Nesta D P, Elliott J S, Warr J P. Biotechnology and Bioengineering, 2000, 67: 457-464
- [47] Tservistas M, Levy MS, Lo-Yim MYA, et al. Biotechnology and Bioengineering , 2001 , 72 : 12-18
- [48] Spilimbergo S, Elvassore N, Bertucco A. Journal of Supercritical Fluids, 2002, 22: 55-63
- [49] Striolo A, Favaro A, Elvassore N, et al. The Journal of Supercritical Fluids, 2003, 27: 283-295

· 1033 ·