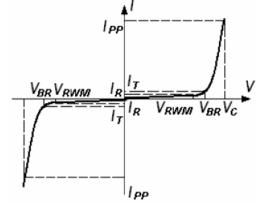


The ESD9D5.0CT5G ESD protector is designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDA's. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The ESD9D5.0CT5G protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. The ESD9D5.0CT5G is available in a SOD-923 package with working voltages of 5 volt. It gives designer the flexibility to protect one bidirectional line in applications where arrays are not practical. Additionally, it may be "sprinkled" around the board in applications where board space is at a premium. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 8kV contact discharge)

Feature


- 100 Watts peak pulse power (tp = 8/20 µ s)
- Transient protection for data lines to

IEC 61000-4-2 (ESD) \pm 25kV (air), \pm 10kV (contact)

IEC 61000-4-4 (EFT) 40A (5/50ns)

IEC 61000-4-5 (Lightning) 24A (8/20 μ s)

- Small package for use in portable electronics
- Suitable replacement for MLV's in ESD protection applications
- Protect one I/O or power line
- Low clamping voltage
- Stand off voltages: 5V
- Low leakage current
- Solid-state silicon-avalanche technology
- Small Body Outline Dimensions: 1.0mm×0.6mm×0.5mm
- Equivlent to 0402 package

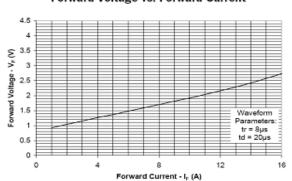
Applications

- Cell Phone Handsets and Accessories
- Personal Digital Assistants (PDA's)
- Notebooks, Desktops, and Servers
- Portable Instrumentation
- Cordless Phones
- Digital Cameras
- Peripherals
- MP3 Players

Electrical characteristics @25℃(unless otherwise specified)

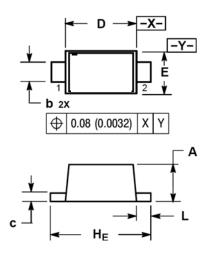

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Working Voltage	V_{RWM}				5	V
Breakdown voltage	V_{BR}	I _t =1mA 5.6 6.7		6.7	7.8	V
Reverse Leakage Current	I _R	V _{RWM} =5V T=25℃			1	μΑ
Clamping Voltage	Vc	$I_{PP}=5A$ $t_P = 8/20 \mu S$			9.8	V
Junction Capacitance	C _j	V _R =0V f = 1MHz		8	15	pF

Absolute maximum rating @25℃


Rating	Symbol	Value	Units
Peak Pulse Power (t _P = 8/20μS)	P _{pk}	100	W
Maximum Peak Pulse Current (t _P = 8/20μS)	I _{pp}	16	А
Lead Soldering Temperature	T _L	260 (10 sec)	$^{\circ}$ C
Operating Temperature	TJ	-55 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	$^{\circ}$ C

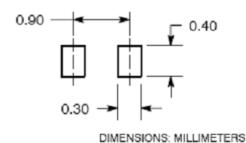
Typical Characteristics

Clamping Voltage vs. Peak Pulse Current



Forward Voltage vs. Forward Current

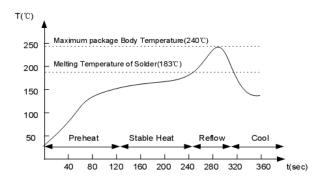
Product dimension



NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.36	0.40	0.43	0.014	0.016	0.017	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.07	0.12	0.17	0.003	0.005	0.007	
D	0.75	0.80	0.85	0.030	0.031	0.033	
Е	0.55	0.60	0.65	0.022	0.024	0.026	
HE	0.95	1.00	1.05	0.037	0.039	0.041	
L	0.05	0.10	0.15	0.002	0.004	0.006	


SOLDERING FOOTPRINT*

Reflow Soldering and Rework Recommendations

Recommended reflow methods, Recommended reflow methods: IR, Vapor phase oven, hot air oven.

- Devices can be cleaned using standard industry methods and solvents.
- If a device is removed from the board, it should be discarded and replaced with a new device.
- Leaded devices are not designed to be compatible with wave soldering manufacturing operations.
- Lead free reflow curve.

NOTE If reflow temperatures exceed recommended profile, devices may not meet the performance requirements, If the reflow curve can not meet your product, please contact SEMITEL.

Ultra Small ESD Protector ESD9D5.0CT5G SES Series

How To Order								
Device	Package	Carrier	Marking Code	Standard Quantity				
ESD9D5.0CT5G	SOD	Tape	9C	8000pcs				

Website: http://www.dgnjdz.com

For additional information, please contact your local Sales Representative.

Copyright 2011, Nanjing Electronics is a registered trademark of Nanjing Electronics.

All rights reserved.