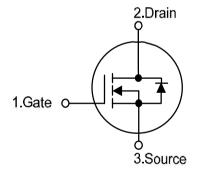
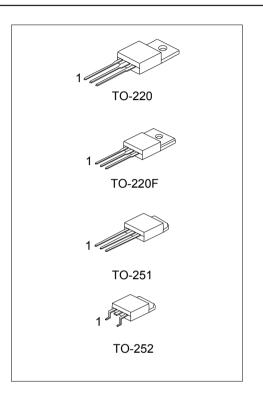


6.2A 650V N-CHANNEL POWER MOSFET


DESCRIPTION


The NJ6N65 is a high voltage power MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications of switching power supplies and adaptors.

■ FEATURES

- * $V_{DS} = 650V$
- * $I_D = 6.2A$
- * RDS(ON) = 1.7 ohm@VGS = 10V
- * Ultra low gate charge (typical 20 nC)
- * Low reverse transfer Capacitance (CRSS = typical 10pF)
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness

SYMBOL

■ ORDERING INFORMATION

Ordering Number	Daalaasa	Pin Assignment			Dooking	
	Package	1	2	3	Packing	
NJ6N65-LI	TO-220	G	D	S	Tape Box	
NJ6N65-BL	TO-220	G	D	S	Bulk	
NJ6N65F-LI	TO-220F	G	D	S	Tube	
NJ6N65A-LI	TO-251	G	D	S	Tube	
NJ6N65D-TR	TO-252	G	D	S	Tape Ree	
NJ6N65D-LI	TO-252	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT		
Drain-Source Voltage		$V_{ extsf{DSS}}$	650	V		
Gate-Source Voltage		V_{GSS}	±30	V		
Avalanche Current (Note 2)		I _{AR}	6.2	Α		
Continuous Drain Current		I _D	6.2	Α		
Pulsed Drain Current (Note 2)		I _{DM}	24.8	Α		
Avalanche Energy	Single Pulsed	6N65	L	440	mJ	
	(Note 3)	6N65-P	E _{AS}	180		
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.5	ns		
Power Dissipation	TO-220 TO-220F TO-251/TO-252		P _D	125	W	
				40	W	
				55	W	
Junction Temperature		T_J	+150	°C		
Operating Temperature		T _{OPR}	-55 ~ +150	°C		
Storage Temperature		T _{STG}	-55 ~ +150	°C		

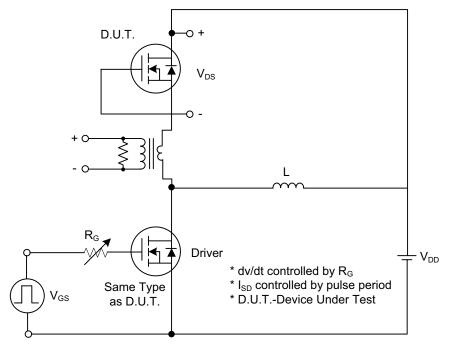
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

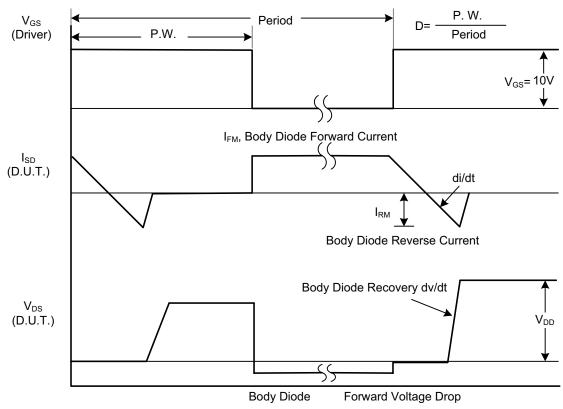
- 2. Repetitive Rating : Pulse width limited by T_J
- 3. L = 14mH, I_{AS} = 6A, V_{DD} = 90V, R_{G} = 25 Ω , Starting T_{J} = 25°C
- 4. $I_{SD} \le 6.2 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25 ^{\circ}C$

■ THERMAL DATA

PARAMETER		SYMBOL	RATING	UNIT
Junction to Ambient	TO-220		62.5	°C/W
	TO-220F	θ_{JA}	62.5	°C/W
	TO-251/TO-252		110	°C/W
Junction to Case	TO-220		1.0	°C/W
	TO-220F	θ_{JC}	3.2	°C/W
	TO-251/TO-252		2.27	°C/W

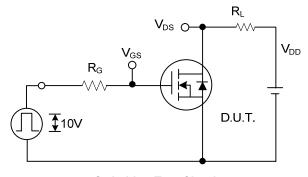

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	650			V
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 650V, V_{GS} = 0V$			10	μΑ
Gate- Source Leakage Current	Forward	I _{GSS}	$V_{GS} = 30V, V_{DS} = 0V$			100	nΑ
	Reverse		$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
Breakdown Voltage Temperature	Coefficient	△BV _{DSS} /△T _J	I _D =250μA, Referenced to 25°C		0.53		V/°C
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-State	6N65	R _{DS(ON)}	V _{GS} = 10V, I _D = 3.1A		1.1	1.7	Ω
Resistance	6N65-P				1.4	2	Ω
DYNAMIC CHARACTERISTICS							
lanut Canacitanas	6N65	0			800	1000	рF
Input Capacitance	6N65-P	C _{ISS}			770	1000	рF
0.4	6N65		V _{DS} =25V, V _{GS} =0V,		95	120	рF
Output Capacitance	6N65-P	Coss	f=1.0 MHz		70	120	рF
D T (0 "	6N65	C _{RSS}			18	25	рF
Reverse Transfer Capacitance	6N65-P				10	25	pF
SWITCHING CHARACTERISTIC	S						
Turn-On Delay Time		t _{D(ON)}			20	50	ns
T 0 D: T:	6N65	- t _R	 V _{DD} =325V, I _D =6.2A,		100	120	ns
Turn-On Rise Time	6N65-P				70	120	ns
Turn-Off Delay Time		t _{D(OFF)}	R _G =25Ω (Note 1, 2)		40	90	ns
T 0" F " T'	6N65	- t _F	1		120	150	ns
Turn-Off Fall Time	6N65-P				80	150	ns
Total Gate Charge		Q_{G}			20	25	nC
Gate-Source Charge		Q _{GS}	V _{DS} =520V, I _D =6.2A,		4.9		nC
Gate-Drain Charge		Q_{GD}	V _{GS} =10V (Note 1, 2)		9.4		nC
DRAIN-SOURCE DIODE CHARA	ACTERISTIC	CS AND MAXI	MUM RATINGS				
Drain-Source Diode Forward Volt	age	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 6.2 \text{ A}$			1.4	V
Maximum Continuous Drain-Source Diode		I _S				6.0	^
Forward Current						6.2	Α
Maximum Pulsed Drain-Source Diode		I _{SM}				24.8	Α
Forward Current						24.0	
Reverse Recovery Time		t_{RR}	$V_{GS} = 0 \text{ V}, I_{S} = 6.2 \text{ A},$		290		ns
Reverse Recovery Charge		Q_{RR}	dI _F /dt = 100 A/μs (Note 1)		2.35		μC
Notes: 1 Pulse Test: Pulse width	< 300mc E	Nuty avala < 20/					

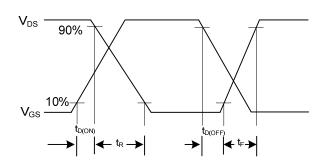

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%

^{2.} Essentially independent of operating temperature

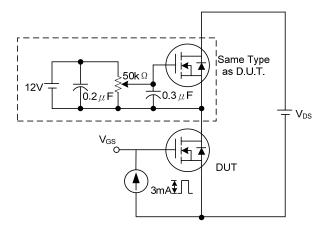
■ TEST CIRCUITS AND WAVEFORMS

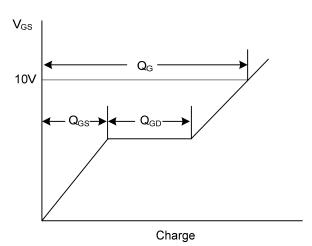


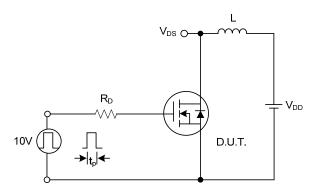
Peak Diode Recovery dv/dt Test Circuit

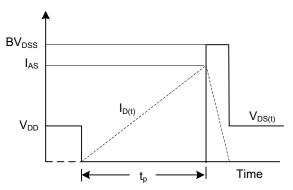


Peak Diode Recovery dv/dt Waveforms

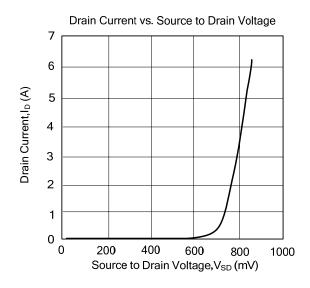

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

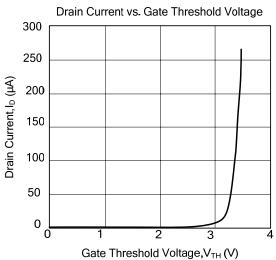

Switching Test Circuit

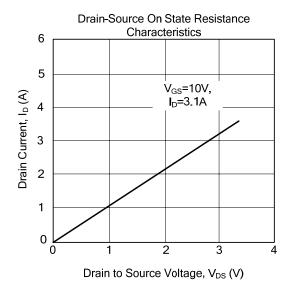

Switching Waveforms

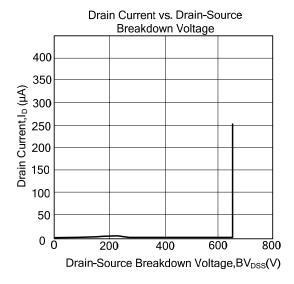

Gate Charge Test Circuit

Gate Charge Waveform




Unclamped Inductive Switching Test Circuit




Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

